

smart welding

Designed for robot-assisted welding applications, this **3D-scan system** is capable of swiftly positioning the laser beam along 3D contours. While a robot guides the scan system along a part's contour, the intelli*WELD*[®] quickly and accurately moves and fine-positions the laser spot. Complex robotic motions and fast robotic repositioning are thereby avoided, thus reducing positioning times between spot welds to a few milliseconds. The result is a substantially enhanced utilization of the laser source.

Despite its 30 mm aperture, the intelliWELD® occupies a remarkably small volume, making it easily mountable on welding robots, even in difficult-to-access locations. Its optics are optimized for fiber-coupled disk or fiber lasers with powers up to 8 kW.

The intelliWELD[®] is based on SCANLAB's fully digital iDRIVE[®] technology, offering an integrated approach to laser and process safety. The technology allows real-time monitoring of all important scan head status parameters. A software-independent interlock signal indicates abnormal operational states.

Typical applications:

- Robot-assisted welding ("remote welding")
- 3D applications
- Processing-on-the-fly

Legend

- 1 Mounting screws *
- 2 Flange (robot adapter plate) *
- 3 Alignment pins *
- 4 Attachment provision for strain relief (fiber)
- 5 Attachment provision for fiber adapter
- 6 Connector for cooling water

- 7 Data interface
- 8 Interlock
- 9 Power in
- 10 Bore holes for attaching an objective holder and a crossjet
- * not included

all dimensions in mm

Pre-Objective Scanning

(18)

Legend

- 11 Fiber adapter
- 12 Variable collimator
- 13 Dichroic mirror
- 14 Focusing optics
- 15 Galvanometer scanner 1
- 16 Galvanometer scanner 2
- 17 Objective
- 18 Working plane
- 19 Attachment provision for process monitoring
- 20 Variable camera tracking optics *
- 21 Camera connection **
- ** only for intelliWELD 30 FC V

Principle of Operation

The laser beam is fiber-delivered to the scan system's water-cooled collimator and then directed to the scan system's moving deflection mirrors. With pre-objective scanning design, focusing of the beam onto the working plane is achieved via a scan objective at the system's beam exit. With post-objective scanning design, focusing is achieved via an integrated focusing optic in front of the deflection mirrors (see figures left).

The variable collimator's optic is dynamically driven along the optical axis via the linAXIS[®] linear axis, thereby altering the collimated laser beam's divergence as well as the overall system's focal length.

The scan system is equipped with a sealed housing. Two protective windows serve to protect the scan objective or the beam exit.

intelliWELD® 30 FC as well as intelliWELD[®] 30 FC V are available with an objective or a prefocusing optic.

Process Monitoring

All intelliWELD® scan systems have connections for process monitoring. Light or radiation emanating from the workpiece and returning via the deflection mirrors is decoupled from the optical path for potential analysis via additional process monitoring equipment.

Furthermore, the intelliWELD® 30 FC V (the V means vision) is equipped with a second camera port with variable camera-tracking optics. This enables process monitoring with continuously readjusted camera focus in the complete operating volume.

intelliWELD®

Control

The intelliWELD[®] 30 FC incorporates SCANLAB's fully digital *iDRIVE*[®] technology, offering an integrated approach to laser and process safety. It allows real-time monitoring of all important scan head and double protective window status parameters. This facilitates detection of process miss-queues and enables advanced remotediagnostics. A software-independent interlock signal, indicating abnormal operational states, can be used to switch the system to a predefined state or trigger an automatic emergency stop.

Options

- A Teach-In Module simplifies the setup of laser scan systems for welding jobs. It is permanently installed at the intelliWELD® scan system's beam exit side. Two laser diodes project (via deflection mirrors) a large crosshair and a small 45°-offset crosshair onto the workpiece and thereby visualize the position of the working laser beam's focus. Both crosshairs exactly intersect at the working volume's center (x = y = z = 0). This enables a simple and quick optical control during a Teach-In process, whether the scan system of the robot is positioned correctly above a defined welding position.
- The RobotSyncUnit is a central operating/control unit for laser welding systems (laser, intelliWELD[®] and robot). Simple and intuitive system usage brings efficiency to programming of welding tasks (see also image right).

For further information on the RobotSyncUnit, visit the website of Blackbird Robotics:

http://www.blackbird-robotics.de/products_remote_en.htm

intelliWELD®

Specifications (all angles are in optical degrees)				
Wavelength	1030 nm - 1085 nm ⁽¹⁾			
Maximum laser power (with specified cooling)	8000 W ⁽²⁾			
Characteristics of the collimator				
Focal length	110 mm			
Limiting numerical aperture	typ. 0.125 ⁽³⁾			
Fiber adapter	QBH,Q5/LLK-B,QD/LLK-D (other types on request)			
Step response time (with	"step" tuning)			
(settling to 1/1000 of full scale)				
1% of full scale	1.2 ms			
10% of full scale	3.5 ms			
100% of full scale	11 ms			
Typical speeds (with "vector" tuning)				
Processing Speed	4 rad/s			
Positioning Speed	50 rad/s			
Dynamic performance				
Tracking error	0.6 ms			
Repeatability	< 22 µrad			
Long-term drift over 8 h (after warm-up)	< 0.6 mrad			
Optical performance				
Typical scan angle	±0.35 rad			
Gain error	< 5 mrad			
Nonlinearity	< 3.5 mrad			
Power requirements	±(15+1.5) V DC,			
	max. 8 A each			
Input and output signals	SL2-100 or			
	optical data transfer			
	(XY2-100-O)			
Weight	21 - 37 kg			
Operating temperature	25 °C ± 10 °C			
Typical water	3 l/min at 20°C and			
requirements	$\Delta p < 0.1$ bar, $p < 4$ bar			
(1) mirror costings for 1020 pm 1	1055 1085 nm and			

⁾mirror coatings for 1030 nm, 1055 - 1085 nm and 1070 - 1085 nm are currently available

 $^{\scriptscriptstyle (2)}$ the maximum laser power may be reduced with broadband scan mirrors

(3) adapters for smaller numerical apertures are available

Typical Optical Configurations

	Pre-Objective scanning		Post-Objective scanning
Focal length of focusing optics	460 mm	330 mm	660 mm
Free operating distance	488 mm	382 mm	472 mm
mage volume size (cuboid-shaped)	(220 x 220 x 140) mm ²	(185 x 185 x 80) mm ²	(370 x 370 x 200) mm ²
mage field size (elliptical)	(385 x 300) mm ²	(240 x 200) mm ²	approx. (450 x 450) mm ²
Focus range in z direction	±70 mm	±40 mm	up to ±100 mm
Focus diameter	630 μm (with 150 μm fiber)	600 μm (with 200 μm fiber)	600 μm (with 100 μm fiber)
Fiber diameter	100 μm, 150 μm or 200 μm	150 μm or 200 μm	50 μm or 100 μm
mage scale	1:4	1:3	1:6

SCANLAB AG · Siemensstr. 2a · 82178 Puchheim · Germany Tel. +49 (89) 800 746-0 · Fax +49 (89) 800 746-199 $info@scanlab.de \cdot www.scanlab.de$

SCANLAB America, Inc. \cdot 100 Illinois St \cdot St. Charles, IL 60174 \cdot USA Tel. +1 (630) 797-2044 · Fax +1 (630) 797-2001 · $info@scanlab-america.com \cdot www.scanlab-america.com$

